Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Diagnostics (Basel) ; 11(8)2021 Jul 22.
Article in English | MEDLINE | ID: covidwho-1325616

ABSTRACT

Diagnostic imaging is regarded as fundamental in the clinical work-up of patients with a suspected or confirmed COVID-19 infection. Recent progress has been made in diagnostic imaging with the integration of artificial intelligence (AI) and machine learning (ML) algorisms leading to an increase in the accuracy of exam interpretation and to the extraction of prognostic information useful in the decision-making process. Considering the ever expanding imaging data generated amid this pandemic, COVID-19 has catalyzed the rapid expansion in the application of AI to combat disease. In this context, many recent studies have explored the role of AI in each of the presumed applications for COVID-19 infection chest imaging, suggesting that implementing AI applications for chest imaging can be a great asset for fast and precise disease screening, identification and characterization. However, various biases should be overcome in the development of further ML-based algorithms to give them sufficient robustness and reproducibility for their integration into clinical practice. As a result, in this literature review, we will focus on the application of AI in chest imaging, in particular, deep learning, radiomics and advanced imaging as quantitative CT.

2.
Int J Environ Res Public Health ; 18(6)2021 03 11.
Article in English | MEDLINE | ID: covidwho-1125507

ABSTRACT

Since December 2019, the world has been devastated by the Coronavirus Disease 2019 (COVID-19) pandemic. Emergency Departments have been experiencing situations of urgency where clinical experts, without long experience and mature means in the fight against COVID-19, have to rapidly decide the most proper patient treatment. In this context, we introduce an artificially intelligent tool for effective and efficient Computed Tomography (CT)-based risk assessment to improve treatment and patient care. In this paper, we introduce a data-driven approach built on top of volume-of-interest aware deep neural networks for automatic COVID-19 patient risk assessment (discharged, hospitalized, intensive care unit) based on lung infection quantization through segmentation and, subsequently, CT classification. We tackle the high and varying dimensionality of the CT input by detecting and analyzing only a sub-volume of the CT, the Volume-of-Interest (VoI). Differently from recent strategies that consider infected CT slices without requiring any spatial coherency between them, or use the whole lung volume by applying abrupt and lossy volume down-sampling, we assess only the "most infected volume" composed of slices at its original spatial resolution. To achieve the above, we create, present and publish a new labeled and annotated CT dataset with 626 CT samples from COVID-19 patients. The comparison against such strategies proves the effectiveness of our VoI-based approach. We achieve remarkable performance on patient risk assessment evaluated on balanced data by reaching 88.88%, 89.77%, 94.73% and 88.88% accuracy, sensitivity, specificity and F1-score, respectively.


Subject(s)
COVID-19 , Humans , Neural Networks, Computer , Risk Assessment , SARS-CoV-2 , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL